Bare Singulars and Pseudo-Incorporation in Western Armenian

Alexandros Kalomoiros

University of Pennsylvania

SALT 31, 7th May 2021

► Main Idea: Bare singulars in Western Armenian (WA) denote unambiguously properties of (sub)kinds.

- ► Main Idea: Bare singulars in Western Armenian (WA) denote unambiguously properties of (sub)kinds.
 - Previous literature (Dayal 2004): The singular (at least in English)
 is ambiguous between denoting a property of kinds and a property of
 objects.

Our argument:

 In WA, certain Pseudo-Incorporating (PI) nominal elements can only be modified by kind-level adjectives.

Our argument:

- In WA, certain Pseudo-Incorporating (PI) nominal elements can only be modified by kind-level adjectives.
- This cannot be captured by restricting what can undergo PI to kind-level denotations (cf. Sağ 2019), as object-level denoting nouns can also PI.

Our argument:

- In WA, certain Pseudo-Incorporating (PI) nominal elements can only be modified by kind-level adjectives.
- This cannot be captured by restricting what can undergo PI to kind-level denotations (cf. Sağ 2019), as object-level denoting nouns can also PI.
- The modification restriction follows naturally if we assume that the bare singular always denotes a (property) of kinds in WA.

Covert plurals

• WA allows 'Num Noun' constructions of the form 'Num N_{sg} ' (Bale et al. 2011, Bale & Khanjian 2014):

(1) jerek (had) a \int agerd three (CLF) student

(2) jerek (had) aſagerd-ner three (CLF) student-PL

Covert plurals

- WA allows 'Num Noun' constructions of the form 'Num N_{sg} ' (Bale et al. 2011, Bale & Khanjian 2014):
- - 'Num Noun' constructions like (1) (covert plurals) can trigger either singular, (3), or plural, (4), verbal agreement (Sigler 1997):
- - Focus: Covert plurals that show singular agreement (non-agreeing)

Bare Sg Pseudo-Incorporate

- We argue that (non-agreeing) covert plurals undergo PI. To do this
 we show that they pattern like other PI-ed elements in the language,
 namely bare singulars.
- So, we first show that bare sg undergo PI:

Bare Sg Pseudo-Incorporate

- We argue that (non-agreeing) covert plurals undergo PI. To do this
 we show that they pattern like other PI-ed elements in the language,
 namely bare singulars.
- So, we first show that bare sg undergo PI:
- Bare sg are number-neutral:
 - (5) John-ə manug tasdiajarage-ts John-DEF child educate-PST.3SG 'John educate child(ren)'

Bare Sg Pseudo-Incorporate

- We argue that (non-agreeing) covert plurals undergo PI. To do this
 we show that they pattern like other PI-ed elements in the language,
 namely bare singulars.
- So, we first show that bare sg undergo PI:
- Bare sg are number-neutral:
 - (5) John-ə manug tasdiajarage-ts John-DEF child educate-PST.3SG 'John educate child(ren)'
- Bare sg take low scope:
 - (6) John-ə manug tʃə tasdiajarage-ts John-DEF child NEG educate-PST.3SG 'John did not educate any children' $(\neg > \exists, *\exists > \neg)$

DOM patterns

- Animate full DPs in WA are marked dative in object position (DOM):
 - (7) John-ə manug-i-n tasdiajarage-ts John-DEF child-DAT-DEF educate-PST.3SG 'John educated the (unique) child'
 - (8) ??John-ə manug-ə tasdiajarage-ts John-DEF child-DEF educate-PST.3SG 'John educated the child'

Bare Sg and DOM

- Bare singulars resist the dative, even if animate:
 - (9) John-ə manug tasdiajarage-ts John-DEF child educate-PST.3SG 'John educate child(ren)'
 - (10) ?*John-ə manug-i tasdiajarage-ts John-DEF child-DAT educate-PST.3SG 'John loves a child'

Bare Sg and DOM

- Bare singulars resist the dative, even if animate:
 - (9) John-ə manug tasdiajarage-ts John-DEF child educate-PST.3SG 'John educate child(ren)'
 - (10) ?*John-ə manug-i tasdiajarage-ts John-DEF child-DAT educate-PST.3SG 'John loves a child'
- So bare sg do not behave as full arguments. We can understand these patterns if we take bare sg to PI (Massam 2001).

Covert plurals PI

- Non-agreeing Covert plurals behave just like bare sg with respect to the PI diagnostics:
- (11) shows low scope:
 - (11) jerek aſagerd tʃ-inga-v three student NEG-fall-PST.3SG 'Three students did not fall' $(\neg > \exists, *\exists > \neg)$

Covert plurals PI

- Non-agreeing Covert plurals behave just like bare sg with respect to the PI diagnostics:
- (11) shows low scope:
 - (11) jerek aſagerd tʃ-inga-v three student NEG-fall-PST.3SG 'Three students did not fall' $(\neg > \exists, *\exists > \neg)$
- (12) shows inability to be marked Dative:
 - (12) John-ə harujr had zinvor-(*i) mert-uts John-DEF 100 CLF soldier-(*DAT) killed.PST.3SG 'John killed 100 soldiers'

Covert plurals PI

- Non-agreeing Covert plurals behave just like bare sg with respect to the PI diagnostics:
- (11) shows low scope:
 - (11) jerek aſagerd tʃ-inga-v three student NEG-fall-PST.3SG 'Three students did not fall' $(\neg > \exists, *\exists > \neg)$
- (12) shows inability to be marked Dative:
 - (12) John-ə harujr had zinvor-(*i) mert-uts John-DEF 100 CLF soldier-(*DAT) killed.PST.3SG 'John killed 100 soldiers'
- Conclusion: Non-agreeing covert plurals undergo Pl.
- **NB**: Non-agreeing covert plurals denote object-level properties.

- Bare Sg in WA allow modification only by kind-level adjectives (this observation is also made in Sağ 2019).
 - (13) jereg, John-ə fantasi/ # hin kirk garta-ts yesterday, john-DEF fantasy/ # old book read-PST.3SG 'Yesterday, John read fantasy/ old book(s)'
- Turkish shows the same pattern (Sağ 2019). Bare Sg in Turkish also PI.

- Bare Sg in WA allow modification only by kind-level adjectives (this observation is also made in Sağ 2019).
 - (13) jereg, John-ə fantasi/ # hin kirk garta-ts yesterday, john-DEF fantasy/ # old book read-PST.3SG 'Yesterday, John read fantasy/ old book(s)'
- Turkish shows the same pattern (Sağ 2019). Bare Sg in Turkish also Pl.
- Analysis of Sag 2019:
 - The bare sg is ambiguous between object-level and kind-level properties.
 - The PI mechanism is restricted to apply to kind-level properties only ⇒ bare sg will never allow object-level mod in PI environments.

- Bare Sg in WA allow modification only by kind-level adjectives (this observation is also made in Sağ 2019).
 - (13) jereg, John-ə fantasi/ # hin kirk garta-ts yesterday, john-DEF fantasy/ # old book read-PST.3SG 'Yesterday, John read fantasy/ old book(s)'
- Turkish shows the same pattern (Sağ 2019). Bare Sg in Turkish also Pl.
- Analysis of Sag 2019:
 - The bare sg is ambiguous between object-level and kind-level properties.
 - The PI mechanism is restricted to apply to kind-level properties only ⇒ bare sg will never allow object-level mod in PI environments.
- However, WA allows PI of object-level properties. Therefore, PI in WA cannot be restricted to just kinds.

- Covert plurals show the same restrictions with regards to modification as bare singulars.
 - (14) hink (had) jevropagan zinvor mertsə-ve-ts-av
 5 CLF European soldier kill-PASS-AOR-PST.3SG
 'Five European soldiers were killed'
 - (15) hink #(had) anoti zinvor mertsə-ve-ts-av
 5 CLF hungry soldier kill-PASS-AOR-PST.3SG
 'Five hungry soldiers were killed'
- (15) becomes fine either when the classifier is overt, or when the context supports 'hungry soldiers' as a type (i.e. we have a roster of hungry soldiers).

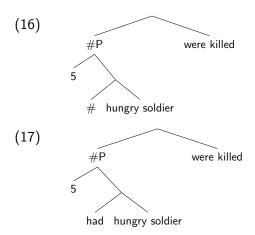
- Covert plurals show the same restrictions with regards to modification as bare singulars.
 - (14)hink (had) jevropagan zinvor mertsə-ve-ts-av CLF European soldier kill-pass-aor-pst.3sg 'Five European soldiers were killed'
 - (15)hink #(had) anoti zinvor mertsə-ve-ts-av hungry soldier kill-PASS-AOR-PST.3SG 'Five hungry soldiers were killed'
- (15) becomes fine either when the classifier is overt, or when the context supports 'hungry soldiers' as a type (i.e. we have a roster of hungry soldiers).
- Claim:
 - We cannot account for these patterns by restricting PI to just kinds.
 - But we can account for them by restricting the bare sg to just kinds (leaving PI unrestricted).

Analysis in a nutshell

• Bare sg unambiguously denote properties of kinds.

Analysis in a nutshell

- Bare sg unambiguously denote properties of kinds.
- When bare sg/covert plural without a CLF PI → the kind needs to be instantiated. This is costly for non-well-established kinds.


Analysis in a nutshell

- Bare sg unambiguously denote properties of kinds.
- When bare sg/covert plural without a CLF PI → the kind needs to be instantiated. This is costly for non-well-established kinds.
- Covert plurals with a CLF

 the classifier is responsible for instantiating the kind directly. So no cost incurred during PI.

Some syntax

 We will assume the following syntax for covert plurals (evidence for this also comes from agreement, see Kalomoiros (forthcoming)):

Patterns:

- Recall the patterns we are trying to capture:
 - **Generalization 1:** Bare singulars, and covert plurals + kind level adjectives → felicitous in an out-of-the-blue context.
 - Generalization 2:
 - Bare singulars, and covert plurals + object level adjective → felicitous only if the context establishes the relevant subkind.
 - Covert plurals with an overt classifier are fine in an out-of-the-blue context regardless of adjective type.

Analysis: Preliminaries

• From Dayal 2004: Bare sg denote properties of singular kinds. These are taxonomic individuals (technically groups in the sense of Landman 1989).

Analysis: Preliminaries

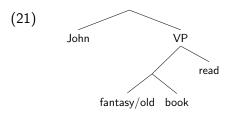
- From Dayal 2004: Bare sg denote properties of singular kinds. These are taxonomic individuals (technically groups in the sense of Landman 1989).
- Diverging from Dayal: At least in WA, bare sg only denote properties of kinds.

Analysis: Preliminaries

- From Dayal 2004: Bare sg denote properties of singular kinds. These are taxonomic individuals (technically groups in the sense of Landman 1989).
- **Diverging from Dayal**: At least in WA, bare sg only denote properties of kinds.
- PI is broken down into three components: (1) Restriction (Chung & Ladusaw 2004), (2) Sort Adjustment (if necessary), (3) Existential Closure.

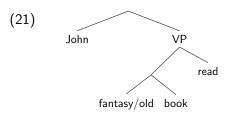
Restriction: If α is branching node, and $\{\beta, \gamma\}$ the set of its daughters, where $[[\beta]] = \lambda x.P(x)$ and $[[\gamma]] = \lambda x_1...\lambda x_n.Q(x_1,...,x_n)$, then $[[\alpha]] = \lambda x_2...\lambda x_n\lambda x_1.$ $Q(x_1,...x_n) \wedge P(x_1).$

• We will make use of the following tools to talk about the relationship between kinds and their instantiations:


- We will make use of the following tools to talk about the relationship between kinds and their instantiations:
 - (18) $belong to(x, y_k)$ is true iff x is an object-level entity and y_k is a kind-level entity that has x as its part/instantiation.

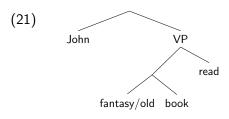
- We will make use of the following tools to talk about the relationship between kinds and their instantiations:
 - (18) $belong to(x, y_k)$ is true iff x is an object-level entity and y_k is a kind-level entity that has x as its part/instantiation.
 - (19) **DSKP:** Let F be a function of the form $\lambda x_1 \ldots \lambda x_n$. α , defined on object-level entities and where α is some formula. Let k be a singular kind. Then, restricting x_i $(1 \le i \le n)$ to k, i.e. $\lambda x_1 \ldots \lambda x_i \ldots \lambda x_n$. $\alpha \wedge x_i = k$, is equivalent to restricting x_i to the instantiations of k, i.e. $\lambda x_1 \ldots \lambda x_i \ldots \lambda x_n$. $\alpha \wedge belong to(x_i, k)$

- We will make use of the following tools to talk about the relationship between kinds and their instantiations:
 - (18) $belong to(x, y_k)$ is true iff x is an object-level entity and y_k is a kind-level entity that has x as its part/instantiation.
 - (19) **DSKP:** Let F be a function of the form $\lambda x_1 \ldots \lambda x_n$. α , defined on object-level entities and where α is some formula. Let k be a singular kind. Then, restricting x_i $(1 \le i \le n)$ to k, i.e. $\lambda x_1 \ldots \lambda x_i \ldots \lambda x_n$. $\alpha \wedge x_i = k$, is equivalent to restricting x_i to the instantiations of k, i.e. $\lambda x_1 \ldots \lambda x_i \ldots \lambda x_n$. $\alpha \wedge belong to(x_i, k)$
 - (20) **Instantiation Principle:** When DSKP is used to instantiate a non-well-established kind in a context that does not support that kind, it leads to decreased contextual acceptability.


- We will make use of the following tools to talk about the relationship between kinds and their instantiations:
 - (18) $belong to(x, y_k)$ is true iff x is an object-level entity and y_k is a kind-level entity that has x as its part/instantiation.
 - (19) **DSKP:** Let F be a function of the form $\lambda x_1 \ldots \lambda x_n$. α , defined on object-level entities and where α is some formula. Let k be a singular kind. Then, restricting x_i $(1 \le i \le n)$ to k, i.e. $\lambda x_1 \ldots \lambda x_i \ldots \lambda x_n \ldots \alpha \wedge x_i = k$, is equivalent to restricting x_i to the instantiations of k, i.e. $\lambda x_1 \ldots \lambda x_i \ldots \lambda x_n$. $\alpha \wedge belong to(x_i, k)$
 - (20) **Instantiation Principle:** When DSKP is used to instantiate a non-well-established kind in a context that does not support that kind, it leads to decreased contextual acceptability.
- The key is whether the belong to relation that instantiates the kind is established via DSKP or not.

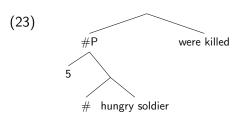
Bare Singulars

(22)
$$[[book]] = \lambda x.x = BOOK$$

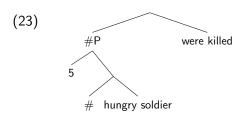

Bare Singulars

(22)
$$[[book]] = \lambda x.x = BOOK$$

$$[[read]](\lambda x.x = OLD \ BOOK) \xrightarrow{Restrict} \lambda y.\lambda x.read(y)(x) \land x = \\ OLD \ BOOK \xrightarrow{DSKP} \lambda y.\lambda x.read(y)(x) \land belong - to(x, OLD \ BOOK) \\ \xrightarrow{\exists -closure} \lambda y.\exists x[read(y)(x) \land belong - to(x, OLD \ BOOK)].$$

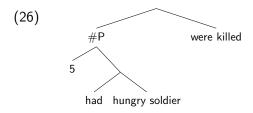

Bare Singulars

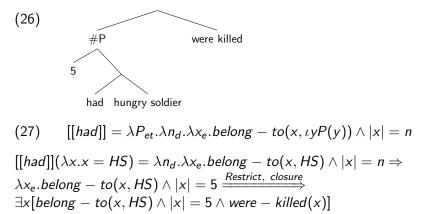
(22)
$$[[book]] = \lambda x.x = BOOK$$

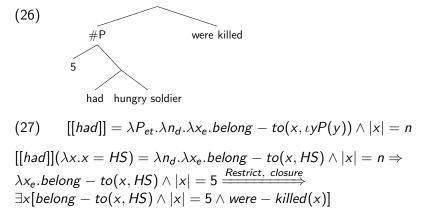

$$[[read]](\lambda x.x = OLD \ BOOK) \xrightarrow{Restrict} \lambda y.\lambda x.read(y)(x) \land x = \\ OLD \ BOOK \xrightarrow{DSKP} \lambda y.\lambda x.read(y)(x) \land belong - to(x, OLD \ BOOK) \\ \xrightarrow{\exists -closure} \lambda y.\exists x[read(y)(x) \land belong - to(x, OLD \ BOOK)].$$

 Because DSKP was used to instantiate a non-well-established kind that has no contextual support, a cost is incurred; thus 'old book' is infelicitous.

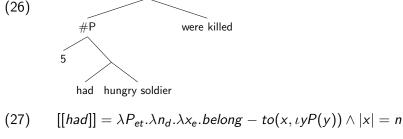
(24)
$$[[\#]] = \lambda P_{\text{et}}.\lambda n_d.\lambda x_e.P(x) \wedge |x| = n$$


(25)
$$[[soldier]] = \lambda x.x = SOLDIER$$


(24)
$$[[\#]] = \lambda P_{\text{et}}.\lambda n_d.\lambda x_e.P(x) \wedge |x| = n$$


(25)
$$[[soldier]] = \lambda x.x = SOLDIER$$

[[#]](
$$\lambda x.x = HUNGRY\ SOLDIER$$
) $\Rightarrow \lambda x_e.x = HS \land |x| = 5 \Longrightarrow \lambda x_e.belong - to(x, HS) \land |x| = 5 \Longrightarrow \exists x[belong - to(x, HS) \land |x| = 5 \land were - killed(x)]$



(27)
$$[[had]] = \lambda P_{et} \cdot \lambda n_d \cdot \lambda x_e \cdot belong - to(x, \iota y P(y)) \wedge |x| = n$$

• DSKP is not used here, so no contextual cost is incurred.

$$\begin{aligned} & [[\mathit{had}]](\lambda x.x = \mathit{HS}) = \lambda n_d.\lambda x_e.\mathit{belong} - \mathit{to}(x,\mathit{HS}) \land |x| = n \Rightarrow \\ & \lambda x_e.\mathit{belong} - \mathit{to}(x,\mathit{HS}) \land |x| = 5 \xrightarrow{\mathit{Restrict}, \; \mathit{closure}} \\ & \exists x[\mathit{belong} - \mathit{to}(x,\mathit{HS}) \land |x| = 5 \land \mathit{were} - \mathit{killed}(x)] \end{aligned}$$

- DSKP is not used here, so no contextual cost is incurred.
- So, we capture the patterns: Modification with object-level adjectives is costly, unless there is contextual support or an overt classifier.

Definites

- ▶ A definite in WA, [N-DEF], can mean either 'the N kind', (28), or 'the unique N':
- (28) John-ə fun-ə pənatfəntfe-ts
 John-DEF dog-DEF make.extinct-PST.3SG
 'John made the dog kind extinct'
- (29) John-ə manug-i-n tasdiajarage-ts John-DEF child-DAT-DEF educate-PST.3SG 'John educated the (unique) child'

Definites

 To capture this in the absence of ambiguity of the bare singular, we need a head to instantiate the kind:

(30) DP $(31) \qquad \lambda P_{et}.\lambda x_e.belong - to(x, \iota y P(y)) \wedge Atom(x)$

- [[child Atomizer]] = λx_e .belong to(x, CHILD) \wedge Atom(x)
- This is the set of instantiations of the child-kind that are atoms.
- The definite article then will return the unique such instantiation if there is one; it will be undefined otherwise.

Atomizer

DSKP and subjects

- Given that DSKP is a general operation, one might expect that it has no positional restrictions.
 - (32) meyu-??(mə) Marjam-i-n gə-xajte gor bee-(INDEF) Mariam-DAT-DEF INDC-sting PROG 'A bee is stinging Mariam'
- (32) would appear to go against this idea.
- But it's plausible that bare singulars just cannot move to [Spec, TP] because they lack a D layer. Full DPs on the other hand can, but they do not require DSKP to compose with the verb.

DSKP and subject

- Covert plurals can be in [Spec, TP]. In that case, they show full
 agreement and take obligatorily high scope. In that case, DSKP
 seems to apply:
 - (33) ??hink anoti zinvor merts-ve-ts-an five hungry soldier kill-PASS-AOR-PST.3PL '5 hungry soldiers were killed'
 - (34) hink had anoti zinvor merts-ve-ts-an five CLF hungry soldier kill-PASS-AOR-PST.3PL '5 hungry soldiers were killed'
- One wrinkle is that (33) does not seem to improve in a context that supports 'hungry soldier' as a type.

References 1

- Bale, A. & Hrayr Khanjian. 2014. Syntactic complexity and competition: The singular plural distinction in Western Armenian. Linguistic Inquiry 45(1). 1–26.
- Chierchia, G. 1998. Reference to Kinds across Language. Natural Language Semantics 6(4), 339–405.
- Chung, S. & W. A. Ladusaw. 2004. Restriction and Saturation. Cambridge, Massachusetts: MIT Press.
- Dayal, V. 2004. Number marking and indefiniteness in kind terms.
 Linguistics and Philosophy (27), 393–450.

References 2

- Landman, F. 1989. Groups, I. Linguistics and Philosophy 12(5), 559–605.
- Massam, D. 2001. Pseudo Noun Incorporation In Niuean. Natural Language & Linguistic Theory 19(1), 153–197.
- Sağ, Y. 2019. The Semantics of Number Marking: Reference to Kinds, Counting, and Optional Classifiers. PhD Thesis, Rutgers.
- Sigler, M. 1997. Specificity and Agreement in standard Western Armenian. PhD Thesis, MIT.